No.10

The Influence of Smartphone Use on the Status of the Tear Film and Ocular Surface

Kyung Chul Yoon, MD, PhD¹, Jung Han Choi, MD¹, Ying Li, MD¹, Yung Hui Kim, MD¹, In Cheon Yoo MD, PhD²

¹Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, Korea ²Department of Ophthalmology, Chonbuk National University Medical School and Hospital, Jeonju, Korea

Background

❖ Smartphone use can affect human health and life

- Average daily use time: 98 min (2011) → 195 min (2013)
- Sleep disorder, headache, musculoskeletal symptoms, malignant melanoma, brain tumors and leukemia...
- Transient monocular vision loss (2016)
- Acute acquired comitant esotropia in adolescents (2016)

Ocular symptoms associated with smartphone use

- Rate and mean time of smartphone use in children (2016)
 : dry eye group >> > non-dry eye group
- May be similar to computer vision syndrome in VDT use?

Decreased blinking rate/incomplete closure Increase exposure of the ocular surface Evaporation and tear film instability! Oxidative damage and apoptosis in the comea Tear breakup time 1 */- inflammation † Ocular surface inflammation † Dry eye symptoms and signs **Bon KC. ROS Che. 2** **Toon KC. ROS Che. 2** **T

Purpose

To firstly investigate the influences of smartphone use on subjective ocular asthenopia, status of the tear film, and levels of inflam. cytokines and oxidative markers in healthy subjects.

Methods

Subjects and examination

❖ Subjects

- Fifty young healthy volunteers
- No ocular diseases, systemic diseases, or surgical history

❖ Examination

- Smartphone (Galaxy S, Samsung, Korea)
- Fixed brightness, distance, and angle

Evaluation

❖ Subjective visual asthenopia

- Ocular surface disease index (OSDI, 0-100)
- Visual analogue scale (VAS, 0-10 mm)
- Computer vision syndrome (CVS) score (0-6, total score : 30)
 - Fatigue, burning, dryness, blurred vision, dullness

*Assessment of the tear film and ocular surface

- Fluorescein breakup time (FBUT)
- Schirmer test
- Keratoepitheliopathy (KEP)
- Keratograph 5M (Oculus, Germany)
 - Non-invasive BUT (NI-BUT)
 - Tear meniscus height (TMH)

Samples

- Basal tear collection using glass capillary tubes or micropipettes
- Lower nasal conjunctiva using impression cytology

Measurement of inflammatory cytokines

- Tear sampling
- Magnetic bead-based immunoassay
- Markers: IL-1β, IL-6, TNF-α, and IFN-γ

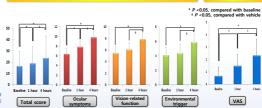
❖ Measurement of oxidative stress markers

- Tear sampling
- Enzyme-linked immunosorbent assay
- Markers: Hexanoyl-lysine (HEL), Malondialdehyde (MDA), 4hydroxy-2-nonenal (4-HNE), and 8-hydroxy-2'-deoxyguanosine

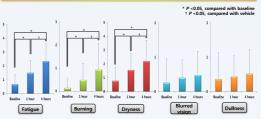
❖ Measurement of cellular ROS production

- Conjunctival Impression cytology
- 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA) assay

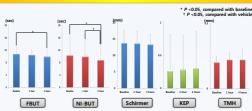
❖ Statistical analysis


- SPSS ver. 18.0
- Repeated-measures ANOVA with post-hoc test
 - Paired T-test

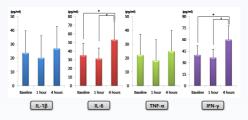
Results


Characteristics	Healthy subjects (N=50)
Age (years)	25.52 ± 2.89
Gender (male/female)	33/17
FBUT (sec)	10.76 ± 2.03
Schirmer I test (mm)	13.66 ± 4.10
KEP (0-9)	0.26 ± 0.56
OSDI score (0-100)	16.43 ± 13.26
Refraction (spherical equivalent)	-2.91 ± 1.30

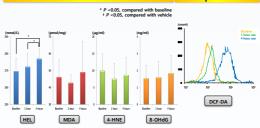
OSDI scores


VAS score

CVS scores



Status of the tear film


Level of inflammatory cytokines

* P <0.05, compared with baseline † P <0.05, compared with vehicle

Level of oxidation markers

ROS production

Conclusions

Smartphone use could not only aggravate subjective symptom indices but also induce tear film instability, oxidative stress, and inflammatory response in the tears and ocular surface.